Organotypic modeling of human keratinocyte response to peroxisome proliferators.
نویسندگان
چکیده
Peroxisome proliferators (PPs) are a diverse chemical group including hypolipidemic drugs and some fatty acids. Their stimulation of PP-activated receptors (PPARs) and subsequent control of gene expression regulates metabolism and differentiation in many cells. PPs have multiple opportunities to target human epidermal keratinocytes because of delivery through dietary, clinical, and/or topical exposure routes. PPAR knockout mice and PP treatment of mouse skin or human keratinocytes in monolayer culture have established some effects for PPs in cutaneous differentiation. However, incomplete epidermal maturation characteristic of monolayer keratinocytes and rodent-specific effects may limit our full understanding of human keratinocyte responses to PPs. To address these issues, we investigated PP influence on primary human keratinocytes in organotypic cultures that recapitulate biochemical markers of epidermis. We found that the PPARα agonists clofibrate, docasohexaenoic acid, and WY-14,643 produced mild to moderate keratinocyte hyperplasia, increased stratification (particularly of granular and cornified layers), and enhanced levels of the differentiation markers filaggrin, ABCA12, and phosphorylated HSP27. Several PP effects generated in the organotypic system, however, were distinct from those previously reported for rodent skin and human keratinocyte monolayer cultures, suggesting that the species and growth context of target cells can impact exposure outcomes. Given the utility of organotypic cultures for modeling the epidermis, studies in this system may bridge the gap between the rodent assays and clinical studies of human epidermal responses to PPs.
منابع مشابه
In vitro Co-Culture of Human Skin Keratinocytes and Fibroblasts on a Biocompatible and Biodegradable Scaffold
Background: Extensive full-thickness burns require replacement of both epidermis and dermis. In designing skin replacements, the goal has been to re-create this model and make a product which has both essential components. Methods: In the present study, we developed procedures for establishing confluent, stratified layers of cultured human keratinocytes on the surface of modified collagen-chito...
متن کاملIsolation of human oral keratinocyte progenitor/stem cells.
Progenitor/stem cell populations of epithelium are known to reside in the small-sized cell population. Our objective was to physically isolate and characterize an oral keratinocyte-enriched population of small-sized progenitor/stem cells. Primary human oral mucosal keratinocytes cultured in a chemically defined serum-free culture system, devoid of animal-derived feeder cells, were sorted by rel...
متن کاملRegulation of ABCG1 expression in human keratinocytes and murine epidermis.
ABCG1, a member of the ATP binding cassette superfamily, facilitates the efflux of cholesterol from cells to HDL. In this study, we demonstrate that ABCG1 is expressed in cultured human keratinocytes and murine epidermis, and induced during keratinocyte differentiation, with increased levels in the outer epidermis. ABCG1 is regulated by liver X receptor (LXR) and peroxisome proliferator-activat...
متن کاملCharacterization of the species-specificity of peroxisome proliferators in rat and human hepatocytes.
Peroxisome proliferation is a well-defined pleiotropic effect that is mediated by the ligand inducible transcription factor peroxisome proliferator-activated receptor (PPAR) alpha. Because marked peroxisome proliferation occurs in rodents but not in humans, we aimed to elucidate the molecular and cellular determinants of this species-specificity in hepatocytes. Analysis of peroxisomal marker en...
متن کاملMolecular basis of non-responsiveness to peroxisome proliferators: the guinea-pig PPARalpha is functional and mediates peroxisome proliferator-induced hypolipidaemia.
The guinea pig does not undergo peroxisome proliferation in response to peroxisome proliferators, in contrast with other rodents. To understand the molecular basis of this phenotype, the peroxisome proliferator activated receptor alpha (PPARalpha) from guinea-pig liver was cloned; it encodes a protein of 467 amino acid residues that is similar to rodent and human PPARalpha. The guinea-pig PPARa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cells, tissues, organs
دوره 196 5 شماره
صفحات -
تاریخ انتشار 2012